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As aircraft move to using composite materials as their primary structure they become
lighter and more flexible as well. This presents some significant challenges in association with
gust load alleviation. In this paper we develop an aeroservoelastic model for use in developing
controllers that utilize distributed control surfaces for active gust load alleviation in a set
of wind tunnel experiments. The model is based on an preexisting aeroelastic wing tunnel
model and compares the baseline functionality to it. We also provide simple full state feedback
simulations for the model.

I. Introduction

The design of aircraft are required to be able to with stand the loads applied to them from external gust for the sake
of survivability.[1] As aircraft have continued to reduce their structural weight they are reducing the safety factor

associated with gust so the investigation into active gust load alleviation has been steadily gaining importance over the
past few decades. By applying gust load alleviation their are opportunities not only to increase the aircraft’s safety factor
but also reduce aircraft weight.[2]

There are quite a few different approaches for active gust load alleviation. One of the more common approaches is to
use model predictive control and using proposed look ahead LIDAR methods to observe the future gust states and react
to it appropriately. [3, 4] The SensorCraft used an Generalized Predictive Controller approach for their experiments
with an AutoRegressive eXoegnenous input and impulse response model system identification rather successfully.

This experiment and the associated model that we develop in this paper are looking to take advantage of the variable
camber continuous trailing edge technology as a means of multi-objective control included gust load alleviation. The
double hinge configuration allows the model to change it’s camber and has been shown to be an effective means of
reducing drag.[5] There have been additional promising simulation results suggesting that the the VCCTEF design
can effectively maintain good tracking while reducing modal response and gusts.[6] It has also shown promise with
time-varying weight for multi-objective control of drag and maneuver load alleviation. These results are promising
enough that they warrant experimental investigation.

This paper will develop and aeroservoelastic model for an wind tunnel experiment of multi-objective control. We
will start by reviewing the general geometry that will be used for the testing then investigate the approach taken to build
up this preliminary model comparing it to pre-existing tunnel models. Finally we will have some simulation results.

II. Wing Geometry
The wing geometry used for this experiment is NASA’s Common Research Model which was developed to provide

an open platform for research. The NASA Common Research Model (CRM) is a wide-body commercial aircraft with
supercritical transonic wing.[7] Figure 1 shows an CAD rendering of the full sized CRM.
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Fig. 1 CAD model of full scale CRM

This set of experiments and the model we are developing for them uses the an twist optimized version of the CRM
wing with VCCTEF applied to it as the layout schematic in Figure 2 shows. The wing used was 7 foot half span and had
12 controller surfaces or 6 VCCTEFs. Further details of the actual tunnel model can be found in [8].
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Fig. 2 Wind tunnel wing and flap layout

III. Structural Modeling
The structural model of the wing can be represented as a beam with flapwise or wing out-of-plane bending, w,

chordwise or in-plane bending, v, axial displacement, u, and torsion θ. The force and moment equilibrium equations for
the representative beam are

∂E Auye
∂ye

+ fye = 0 (1)

∂GJθe
∂ye

+ fye = 0 (2)

∂2

∂y2
e

(
EIxexew

)
= fz −

∂mxe

∂ye
(3)

∂2

∂y2
e

(EIzzv) = fye −
∂mz

∂ye
(4)

where E is the modulus of elasticity, Iii is the area moment of inertia for the ii axis, ye is along the elastic axis and
xe is perpendicular with positive towards the leading edge, fi is the force in the i direction, mi is the moment about the i
axis.
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A. Finite Element Modeling
The wing beam can be represented as an series of finite elements for the purpose of modeling. Using the same finite

element formulation as used in previous works[9, 10] the beam can be broken into N straight beam elements along the
elastic axis. We can assume that the finite elements are following specified shape functions Nw(ye), Nv(ye), and Nθ (ye)
where the Nw and Nv are Hermite shape functions and Nθ is a linear shape function with respect to the elastic axis ye.

The system of finite elements for element j can be represented as an elemental stiffness matrix

KS j =

∫ l

0


N“T
w EI zzN“

w 0 0 0
0 N“T

v EI xxN“
v 0 0

0 0 N“T
u GJN“

u 0
0 0 0 N“T

θ GJN“
θ


dy (5)

where KS j is the element stiffness matrix and the associated mass matrix is

MS j =

∫ l

0


NT
w ρANw 0 0 −NT

w ρAecgNθ
0 NT

v ρANv 0 0
0 0 NT

u ρNu 0
−NT

θ ρAecgNw 0 0 NT
θ ρIxexe Nθ


dy (6)

The local coordinate vectors are rearranged to be

µj =
[
w1 wye1

v1 vye1
uye1

θe1 w2 wye2
v2 vye2

uye2
θe2

]T
j

(7)

B. Translation of Local Coordinates to Global Coordinates
The section stiffness and mass matrices in Equations 5 and 6 are done in the local beam coordinates on the elastic

axis. They need to be translated back into the global coordinate frame. This is done on an node by node basis where
they are translated to global states by

µj = Tjpj (8)

where,

µ j︷ ︸︸ ︷

w

wye

v

vye
uye
θye

 j
=

Tj︷                                                                                                 ︸︸                                                                                                 ︷

cosΓj 0 −sinΛjsinΓj 0 −cosΛjsinΓj 0
0 cosΛj 0 0 0 sinΛj

0 0 cosΛj 0 −sinΛj 0
0 sinΛjsinΓj 0 cosΓj 0 −cosΓjsinΓj

sinΓj 0 sinΛjcosΓj 0 cosΛjcosΓj 0
0 −sinΛjcosΓ 0 sinΓj 0 cosΛjcosΓj



p j︷  ︸︸  ︷

∆z
∆φz

∆x
∆φx

∆y

∆φy

 j
(9)

The pj’s can then be combined to get the total displacement vector

p =
[
∆z1 ∆φz1 ∆x1 ∆φx1 ∆y1 ∆φy1 . . . ∆zN+1 ∆φzN+1 ∆xN+1 ∆φxN+1 ∆yN+1 ∆φyN+1

]
(10)

The global structural mass and stiffness matrices can be assembled to correspond with the global displacement
vector p and are formed by

MS =

N∑
j=1

TT
j MS jTj (11)

and

KS =

N∑
j=1

TT
j KS jTj (12)
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which results in a structural FEM system of equations

MS Üp + KSp = F (13)

For the wind tunnel model a fixed root boundary condition can be applied by zeroing out all of the displacement
at the root node and removing the associated cells for MS and KS . From here on MS and KS will be referring to the
structural mass and stiffness matrices with the fixed root boundary conditions applied.

C. Structural Damping
A structural damping factor is necessary to represent the natural energy dissipation of the wings constitute materials,

internal friction, and various other damping factors. The viscous damping is represented by ζs where ζs = ζ I. In general
each mode will have a unique damping factor but for initial simulations we will assume they all share the same value.

The structural damping matrix can be found by

Cs = 2MSXSζSΩSX−1
S (14)

where XS is the eigenvector matrix of the matrix M−1
S KS and ΩS is the diagonal matrix of natural frequencies

associated with the structural matrices.

D. Modal Transformation and Reduction
Combining equation 13 with 14 results in

Ms Üp + CS ∗ Ûp + KSp = F (15)

By using the eigenvector matrix XS presented earlier an modal transformation can be applied to Equation 15. Modal
reduction can be performed during this process by truncating XS such that only the desired modes are remaining creating
a reduced order modal matrix Φ resulting in the modal equation

Φ
T MSΦ Üq + ΦTCS Ûq + ΦT KSΦq = ΦT F (16)

From this point forward we will be using the general modal coordinates where q are the general coordinates and

MmS = Φ
T MSΦ (17)

KmS = Φ
T KSΦ (18)

CmS = Φ
TCSΦ (19)

where Mms , KmS ,CmS are the modal mass, stiffness, and damping matrices respectively.

E. Structural Modes
The model here was based on an existing wind tunnel model shown in [8] and we can compare the associated modes.

Table 1 compares the modes of the GVT and NASTRAN results to the
We can see from Table 1 that the torsional modes were especially difficult to match. This was not associated with

just the structure but also ensuring convergence of the aeroelastic model for the trim condition of the ASE.
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Mode Experiment NASTRAN MATLAB FEM Description
1 2.8 2.8 2.96 1st Bending
2 11.3 12.2 13.78 2nd Bending
3 13.2 13 15.0 In-Plane Bending + (Vertical) Bending
4 27 31 31.6 Bending + Torsion
5 33 33 44.5 1st Torsion
6 47 48 58.8 In-Plane Bending
7 52 58 68.8 3rd Bending
8 70 67 89.9 2nd Torsion

Table 1 Comparison of MATLAB modes, NASTRAN, and experimental.

Fig. 3 Mode shapes of the wing tunnel CRM
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Figure 3 shows the equivalent MATLAB Beam model modes. They compare favorably to the NASTRAN mode
shapes from [8].

IV. Aeroelasticity
The aeroelastic modeling section will focus on the adaptation of the models from [9] and [10] to fit the wind tunnel

model. In the final version of the paper a more comprehensive derivation of the aeroelastic components will be provided
for completeness.

A. Side Wall Balance Angle of Attack
While the wind tunnel model does not have rigid body dynamics there are dynamics and aeroeleastic forces that are

derived from the side wall balance angle of attack. The sidewall balance angle of attack can be computed as[11]

αs(y) = −
−zt

ucosΛ

(
1 +

xt + u
ucosΛ

)
(20)

where zt is the vertical velocity, xt is the additional stream-wise velocity and u is airspeed. Equation 20 can be
represented as an partial derivative

αs(y) =
∂αc
∂1
+

∂αc
∂alpha

α +
∂αc
∂qr

qr (21)

where
∂αc
∂1
= −tanΛsinΓ (22)

∂αc
∂alpha

=
cosΓ
cosΛ

(23)

∂αc
∂qr
=

ycosΓ
V∞cosΛ

(24)

where αc is the complete local angle of attack and qr is the rigid body pitch rate. The force vectors for the elemental
components can then be generated using the same methodology using the Hermite Nw and linear interpolations Nu and
Nθ which generates elemental matrices

Hαj =

∫ l

0



NT
w

∂L
∂y∂α

∂αc

∂α − N ‘T
w

ec
c

∂m
∂y∂α

∂αc

∂α

����
ec

tanΛ

NT
v

∂D
∂y∂α

∂αc

∂α

����
ec

NT
u

∂D
∂y∂α

∂αc

∂α

����
ec

tanΛ

−NT
θ

∂m
∂y∂α

∂αc

∂α

����
ec


dy (25)

Hqr j
=

∫ l

0



NT
w

∂L
∂y∂α

∂αc

∂qr
− N ‘T

w
ec
c

∂m
∂y∂α

∂αc

∂qr

����
ec

tanΛ

NT
v

∂D
∂y∂α

∂αc

∂qr

����
ec

NT
u

∂D
∂y∂α

∂αc

∂qr

����
ec

tanΛ

−NT
θ

∂m
∂y∂α

∂αc

∂qr

����
ec


dy (26)

H̄qr j
=

∫ l

0


N ‘T
w

πc
8
∂m
∂y

∂α
∂qr ȳ

tanΛ
0

−NT
u
πc
8
∂D
∂y

∂α
∂qr ∂ȳ

tanΛ
NT
θ
πc
8
∂m
∂y

∂αc

∂qr ∂ȳ


dy (27)

7



Ḡqr j
=

∫ l

0


N ‘T
w

πem
2V∞

∂m
∂y

αc

∂qr
tanΛj

0
−NT

u
πem
2V∞

∂D
∂y

αc

∂qr
Λj

NT
θ
πem
2V∞

∂m
∂y

αc

∂qr
tan


dy (28)

Ḡαj =

∫ l

0



N,T
w

πem
2V∞

∂m
∂y

(
c2

32
∂αc

∂α∂ȳ + em
∂αc

∂α

����
em

)
tanΛj

0

−NT
u
πem
2V∞

∂D
∂y

(
c2

32
∂αc

∂α∂ȳ + em
∂αc

∂α

����
em

)
tanΛj

NT
θ
πem
2V∞

∂m
∂y

(
c2

32
∂αc

∂α∂ȳ + em
∂αc

∂α

����
em

)
tan


dy (29)

where em is the distance from the quarter chord line the the elastic axis. The component matrices can then
be combined together to form the matrices Ḡα, Ḡqr , Halpha, Hqr , and H̄qr which can be converted to generalized
coordinates by multiplying by ΦT .

B. State Equation
In order to create the state space model we will start by defining the relevant function states to formulate an state

equation.

uα =
[
α, qr

]T
(30)

x∆ =
[
δ, v,w

]T
(31)

xQ =
[
q, y, z

]T
(32)

which results in

M ÜQ Ûuα Ûuα +���
�:0M ÜQ Û∆ Ûx∆ + MQ Ü∆ Üx∆ +���

�:0M ÜQ ÛQ Ûx ÛQ + M ÜQ ÜQ ÜXQ = S ÜQuα
Uα + S ÜQ∆x∆ + S ÜQ Û∆ Ûx∆ + S ÜQQxQ + S ÜQ ÛQ ÛxQ (33)

where,

M ÜQ Ûuα =


−ΦT Ḡα −ΦT Ḡq

0 0
0 0

 (34)

where Ḡα and Ḡqr were determined from Section IV.A.

M ÜQx∆
=


−ΦT Fec 0 0

0 0 0
0 0 0

 (35)

where Fec is the circulatory forces from the flaps and is defined in [9].

M ÜQ ÜQ =


MmS + Φ

T Man 0 0
0 I 0
0 0 I

 (36)

8



where Ms is the structural mass matrix whose determination will be discussed earlier in Section III.A and Man is
the non-circulatory aeroelastic contributions of the modal accelerations defined in [9].

S ÜQuα
=


ΦT Hα ΦT Hqr + Φ

T H̄qr

0 0
0 0

 (37)

where Hα and Hq are the circulatory loads contributed and H̄q is the non-circulatory loads contributed.

S ÜQ∆ =


ΦT (Den + 0.5Dec + a4

2V∞
c Eec) ΦT Dec ΦT

2V∞
c Eec

0 0 0
0 0 0

 (38)

where, Den is the non-circulatory contributes of the flap deflections, Dec is the circulatory contributions, Eec all
from [9]. a4 is an RT Jones approximation parameter from Table 6 [9].

S ÜQ Û∆ =


ΦT (Een + 0.5Eec) 0 0

0 0 0
0 0 0

 (39)

where Een is the non-circulatory of the flap deflection rate defined in [9].

S ÜQQ =


−(KmS + Φ

T (Kan + 0.5Kac + a4
2V∞
c Cac)) −ΦT Kac −ΦT 2V∞

c Cac

0.5a2
2V∞
c

2 −a2
2V∞
c

2 0
a6

2V∞
c

2 0 − 2V∞
c

2

 (40)

where, KmS is the structural stiffness matrix that was discussed in Section III.A, Kan is the non-circulatory load
contributions, Kac is the non-circulatory load contributions, Cac is the circulatory load contributions, a2 and a6 are RT
Jones approximation parameters from Table 6 all from in [9].

S ÜQ ÛQ =


−(CmS + Φ

T (Can + 0.5Cac)) 0 0
a4

2V∞
c −a3

2V∞
c 0

a5
2V∞
c 0 −a3

2V∞
c

 (41)

where, Cs is the structural damping matrix using ζ = 0.01 defined in Equation 45, Can is the non-circulatory load
contributions defined in Equation 128, a3 and a5 are RT Jones approximation parameters from Table 6 all from in [9].

For the final ASE the input and state vectors will be

U =
[
α Ûα Üα δ Ûδ Üδ

]T
(42)

this means that the δ aeroelastic lag states v and w must be included in the state vector from there Equation 33 can
be augment to include the flap aeroelastic lag states.

x =
[
xQ ÛxQ

]T
(43)

δlag =
[
v w

]T
(44)

αg =
[
υ Ûυ

]T
(45)

Equation 33 can be rearranged into
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M︷                       ︸︸                       ︷

I 0 0 0 0
0 M ÜQ ÜQ 0 0 0
0 0 I 0 0
0 0 0 I 0
0 0 0 0 I



ÛX︷ ︸︸ ︷

Ûx
Üx
Ûδlag
Üδlag
Ûαg


=

S︷                                                       ︸︸                                                       ︷

0 I 0 0 0
S ÜQQ S ÜQ ÛQ S ÜQδlag

0 S ÜQαg

0 0 0 I 0
0 0 S Üδlagδlag

S Üδlag
Ûδlag

0
0 0 0 0 S Ûαgαg



X︷ ︸︸ ︷

x
Ûx

δlag
Ûδlag
αg


+

T︷                                                    ︸︸                                                    ︷

0 0 0 0 0 0
T ÜQα T ÜQ Ûα T ÜQ Üα T ÜQδ T ÜQ Ûδ T ÜQ Üδ

0 0 0 0 0 0
0 0 0 T Üδlagδ

T Üδlag
Ûδ 0

0 0 0 0 0 0


U

(46)
where,

T Üδlagδ
=

[
0.5a2

2V∞
c

2
I

a6
2V∞
c

2
I

]
(47)

T Üδlag
Ûδ =

[
a4

2V∞
c I

a5
2V∞
c I

]
(48)

S Üδlagδlag
= a2

2V∞
c

2
I (49)

S Üδlag
Ûδlag
= a3

2V∞
c

I (50)

S ÜQδlag
=



0 0
0 0
0 0

ΦT Dec ΦT
2V∞
c Eec

0 0
0 0


(51)

S Ûαgαg =

[
0 I

−a2
2V∞
c −a3

2V∞
c

]
(52)

S ÜQαg
= Fg (53)

where,

Fg =



F1,1 0 0 . . . 0 0
F2,1 F2,2 0 . . . 0 0
0 F3,2 F3,3 . . . 0 0
0 0 F4,3 0 0
...

...
...

. . .
...

...

0 0 0 . . . Fm−1,m−1 Fm−1,m

0 0 0 . . . 0 Fm,m


(54)

where m is the number of nodes in the wing finite element model and

[
Fi,i

Fi+1,i

]
=

∫ l

0


NT
w lαg − N ′w

Tmαg tanΛ
NT
v dαg

NT
u dαg tanΛ
−NT

θ mαg


dx (55)
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where the Nj’s are the Hermite shape function coefficients and

lαg = cLαQ∞C
dl
dy

1
cosΛ

(56)

dαg =
1

2CL

CDα

CLα

cLαQ∞C
dl
dy

1
cosΛ

(57)

mαg =
e
c

cLαQ∞C
dl
dy

1
cosΛ

(58)

when the clamped boundary condition is applied

Fg = Fg(7 : end, 7 : end); (59)

T ÜQα =



0
0
0

ΦT Hα

0
0


(60)

T ÜQ Ûα =



0
0
0

ΦT (Hqr + H̄qr + Ḡα)
0
0


(61)

T ÜQ Üα =



0
0
0

ΦT Ḡqr

0
0


(62)

T ÜQδ =



0
0
0

ΦT (Den + 0.5Dec + a4
2V∞
c Eec)

0
0


(63)

T ÜQ Ûδ =



0
0
0

ΦT Fen

0
0


(64)
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T ÜQ Üδ =



0
0
0

ΦT (Een + 0.5Eec)
0
0


(65)

Equation 46 can be distilled to
M ÛX = SX + TU (66)

Then the final ASE can be found by left multiplying the inversion of the cumulative mass matrix M and adding in the
gust vector wg as a disturbance.

ÛX =

A︷︸︸︷
M−1S X +

B︷︸︸︷
M−1T U + Ewg (67)

where
wg =

[
g Ûg

]T
(68)

and the gust matrix E is

E = M−1



0 0
0 0
0 0
0 0

a2
2V∞
c

2 1
V∞

a1
2V∞
c

1
V∞


(69)

and a final ASE of
ÛX = AX + BU + Ewg (70)

C. Output Equation
The output bears many similarities to the state equation development and focuses on the translation of the model

states to measurable quantities. The first set of desired measurements are the element displacements, velocities, and
accelerations.

ye =
[
ze(y) φze (y) xe φxe (y) θe(y) φθe (y) ze(y)

]T
(71)

where,
ye = ΦC1X (72)

Ûye = ΦC2X (73)

and
Üye = ΦC2(AX + BU + Ewg) (74)

where C1 is the selector matrix for q states and C2 is the selector matrix for Ûq.

1. Hinge Moment Output Equation
For easy access to the hinge moments the hinge moments due to ASE states have been provided as an output.

yh =
[
Mh1B . . . Mh6B Mh1A . . . Mh6A

]T
(75)

The output hinge equation is
yh = HX X + HUU (76)

where,
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HX =
[
He Helag + Hlag

]
(77)

and,
He =

[
Dδn + 0.5Dδc + a4

2V∞
c Eδc Dδc

2V∞
c Eδc Eδn + 0.5Eδc 0 0

]
+ VδnC2 AC3 (78)

where Vδn is the non circulatory elemental force contributions from the elastic states to the hinge moment defined in [9],

C3 is the selector matrix for the elastic states
[
x Ûx

]T
Helag = VδnC2 AC4 (79)

where C4 is the selector matrix for the flap lag states
[
Ûδlag Üδlag

]T
Hlag =

[
−C5KδC6 −C5CδC6

]
+ −C5MδC6C2 AC3 (80)

where, C5 is the output selector for the flap lag states and C6 is the input selector matrix for the same set of states. Kδ is
the flap stiffness matrix, Cδ is the flap damping matrix, Mδ is the flap mass matrix.

HU =
[
HUα HUδ

]
(81)

and,
HUα =

[
Hhα Hhqr + H̄hqr + Ḡhα Ḡhqr

]
(82)

where Hhα is the circulatory hinge moment contributions of the angle of attack, Hhqr is the circulatory hinge moment
contributions of the pitch rate, H̄hqr is the non-circulatory hinge moment contributions of the pitch rate,Ḡhα is
the non-circulatory mass hinge moment contributions of the pitch rate,Ḡhqr is the non-circulatory hinge moment
contributions of the angle of attack acceleration.

HUδ =
[
−C5KδC7 −C5CδC7 Fδn

]
(83)

where C7 is the input flap selection matrix and Fδn is the aerodynamic forces associated with the circulatory acceleration
of the flaps.

2. Wing Force Output Equation
Starting from Equation 33 we can define

Ms Üq + Cs Ûq + Ksq = Fq (84)

where Fq is the force being applied to the wing structure represented by the left side of the equation. Isolating the modal
forces results in

Fq =
−Man Üq −

(
Kan + 0.5Kac + a4

2V∞
c

)
q − Kacy − 2V∞

c Cacz − (Can + 0.5Cac) Ûq +
[
Hα Hqr + H̄qr

]
uα+(

Den + 0.5Dec + a4
2V∞
c Eec

)
δ + Decv +

2V∞
c Eecw + Fen

Üδ +
[
Ḡα Ḡq

]
Ûuα + (Een + 0.5Eec) Ûδ

(85)

The modal forces can then be translated to general coordinates via

F = ΦFq (86)

The root reaction forces and moments then become

Rx = −
yt i p∑
yroot

Fx(y) (87)

Rz = −
yt i p∑
yroot

Fz(y) (88)
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Mx = −
yt i p∑
yroot

Mz(y) + Fz(y)y (89)

Mz = −
yt i p∑
yroot

Mx(y) + Fx(y)y (90)

These forces and moments need to be translated back to the ASE state and input state vectors

F = Fx + Fu + Fw (91)

where,
Fma = MaΦC2 A (92)

where,
Man = Φ

T MaΦ (93)

Fkc =
[
−

(
0.5Kak + Ka + a4

2V∞
c Cak

)
Φ −KakΦ − 2V∞

c CakΦ −(Ca + 0.5Cak)Φ 0 0 Fbk
2V∞
c Fck 0 0

]
(94)

where,
Kan = Φ

T KaΦ (95)

Kac = Φ
T KakΦ (96)

Cac = Φ
TCakΦ (97)

Dec = Φ
T Fbk (98)

Eec = Φ
T Fck (99)

Then combining Equations 92 and 94 result in

Fx = Fma + Fkc (100)

The real coordinate forces from the angle of attack inputs uα =
[
α Ûα Üα

]
are

Fuα =
[
Hθ H Ûθ + H̄ Ûθ + Gθ G Ûθ

]
(101)

where,
Hα = Φ

T Hθ (102)

Hqr = Φ
T H Ûθ (103)

H̄qr = Φ
T H Ûθ (104)

Gα = Φ
TGθ (105)

Gqr = Φ
TG Ûθ (106)

The real coordinate forces from the flap inputs are

Fδ = Fb + 0.5Fbk + a4
2V∞

c
Fck (107)

where,
Den = ΦFb (108)

Dec = ΦFbk (109)

Eec = ΦFck (110)

The real coordinate forces form the flap rates are

F Ûδ = Fc + 0.5Fck (111)
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Een = ΦFc (112)

Eec = ΦFck (113)

The real coordinates from the flap accelerations
F Üδ = Fd (114)

where,
Fen = ΦFd (115)

These combine to create
Fu =

[
Fuα Fδ F Ûδ F Üδ

]
(116)

The force contributions from gust are

Fw =
1

V∞

[
Hθ H Ûθ + Gθ

]
(117)

3. Strain Gauge Output
The translation of the moments from the the previous section to strain gauge outputs is inversely proportional to 1

EI
resulting in the output equation

ε = SGMxX + SGMuU + SGMwwg (118)

where,

SG =



−1
E1I1

0 . . . 0
0 −1

E2I2
. . . 0

...
...

. . .
...

...

0 0 . . . −1
Em Im


(119)

4. Offset IMUs
Any desired IMU that is offset from the elastic axis can be created via the current C, D, and F matrices and the

general geometry of their locations, for now we will assume that the IMUs have no z displacement from the neutral axis.
We are also going to assume that gravity has already been removed from the accelerometer readings. Starting with the
knowledge that

∆z = z − ztrim (120)

and
∆x = x − xtrim (121)

where ∆z and ∆x are the states we are interested and the xtrim and ztrim are the deflected trim states that the ASE is
centered about and are effectively zeroed out by the model construction. From here knowing that we are placing the
IMU’s on the z-plane of the elastic axis the arbitrary IMU positions would be

∆z = ∆zo + dsin(θo) (122)

∆x = ∆xo + d(cos(θo) − 1) (123)

where the parameters with sub o are the origin points at the elastic axis and d is the horizontal x distance from the elastic
axis, positive in the forward direction and negative in the aft direction. This results in nonlinear acceleration values of

Ü∆z = Üzo + d Üθocos(θo) − d Ûθ2
osin(θo) (124)

and
Ü∆x = Üxo − d Üθosin(θo) − d Ûθ2

ocos(θo) (125)

which are linearized to
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∆z = Üzo + d Üθo (126)

and
∆ Üx = Üxo (127)

which can be used to create an offset IMU matrix

CIMU =

[
· · · ∆zzo (ypos) · · · ∆zθo (ypos) · · ·
· · · ∆xxo (ypos) · · · · · · · · ·

]
(128)

and can augment the output y [
y

yaug

]
=

[
C

CIMUC

]
X +

[
D

CIMUD

]
U +

[
F

CIMUF

]
d (129)

V. Simulation Results
The initial simulations are using an simple sinusoidal gust input at one hertz with a peak magnitude of 2fps. The

wind speed is 91.5 f ps at an dynamic pressure of 10ps f . A simple full state LQR controller was used to demonstrate
the models implementation and ability for simple controller implementation. The weightings were uniformly applied
where Q = 1−6I and R = 1−5. The simulation was constructed in Simulink with a fourth order Runge-Kutta integration
method with a time step of 5ms.

Fig. 4 Input sinusoidal gust

Figure 4 shows the input gust and Figure 5 shows how that gust input gets distributed to the individual gust channels
and includes a time delay for the wing sweep.
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Fig. 5 Gust propagation model from the initial gust in Figure 4 with the time delay due to the wing sweep and
demonstrating the local gust channels

Figure 6 shows the wing tip displacement with and with out the LQR control demonstrating a reduction of the effect
the gust has on the tip displacement.
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Fig. 6 Model wing tip displacement open loop and full state feedback gust response

Figure 7 shows the root bending with and with out the LQR control demonstrating a interesting phenomena of the
uniform weightings where initially the LQR controller increased the root bending moment but eventually decreased it
over all. In a more realistic implementation the root bending moment would likely need much higher weighting.

Fig. 7 Root bending moment open loop and full state feedback gust response

Figure 8 shows the control response for each of the individual flaps in the simulation. This shows the location of
each flap and the responses are fairly similar with the B flaps having smaller responses because their smaller control
surface area and the uniform weighting applied to the LQR controller.
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Fig. 8 Individual flap response for the LQR controller
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VI. Conclusion
We have developed an aeroservoelastic model with gust inputs that vary accross the wing span.We then demonstrated

its ability to perform simple control simulations. This showed the accessibility of the various experimental outputs and
easy of control integration into the mode. The model was compared to previous physical models with good structural
agreement on the lower order modes.
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